On Designing an ACL2-Based
C Integer Type Safety Checking Tool

Kevin Krause and Jim Alves-Foss,
Center for Secure and Dependable Systems, University of Idaho

Consider the Truth Value C I1s Weakly Typed and i1s Not Type Safe

* Type Strength
— A language characteristic based on the amount of coercion (casting)
permitted and performed among its data types
¢ Less coercions = stronger typing

« if(x > -10) { // do something important }

— C source code
— x represents a positive integer between 1 and 10 inclusive

* Truth is Dependant on the Integer Type of x — Coercion is generally performed during compile time to insure
— IfxIsanunsigned int type, then "do something compatibility of operator and operand types
important” would not be executed — Cinteger coercions are rule based
— If x Is an unsigned integer type with a smaller precision than that < Integer ranking
of an unsigned int,, then "do something important” would < Integer promotion rules

4

be executed < Usual arithmetic conversions
— C does not support valid range checking during the coercion process

Type Safety

Integ er Error Conaitions — A program property of being free from unexpected results
“* Unexpected results = compromised system state
“» Compromised system state = vulnerable to attacks and/or

* Overflow/Underflow failure
— Occurs whenever the value of an integer type is increased or » Denial of Service

decreased beyond the type’s valid value range i Ezggg&nﬂ?f'algg\l}il’lzl’yesCode
“* unsigned Integers silently wrap J

“* behavior for signed Integers is undefined

* Sign error |
— Occurs whenever the meaning of the high order bit is lost PrOj ect Tasks

“* A precision bit

“ A sign bit
 Truncation Error Formalize C’s Static Typing Semantics

— Occu_rs during the coercion from a larger type to a smaller type and « Construct Tool Around Formal Static Typing Semantics
the high order bits are truncated * Prove Assumptions Made About Both are Correct

o 11111111 —-1111

Static C Typing Semantics

* Syntax of Types A Computational Logic

— < C_type > ;= < object-type > | < function-type > — First order theorem prover
| < incomplete-type > | » Applicative Common Lisp
< scalar-type > := < arithmetic-type > | < pointer-type > — Non-destructive programming language

— Shows subtyping relationships necessary for C coercion rules
* Typing Inference Rules Based on Operator/Operand

Constraints _ _
— Typing judgments of the form '+ E : 6 Jool Functional Ity

** Where E is an expression, I' is the type environment, and 0 is the
type attributed to E

— For e>fample, the multiplicative division operation . Input AST and .symtab from c2acl2 Translator
“ I'ke :explty] TFe:exp|t,] . First Pass:
isArithmetic(t,) isArithmetic(t,) — Extract, model, and model declarations
T := arithConv(t, T,) % (SYM (“NAME”) ((TYPE) (QUAL) (STORE)) (VALUE))
,’ » updatable lookup table
[Fe /e :expT] « Second and Subsequent Passes:

— Analyze Expressions and Statements

¢ Check operator/operand compatibility
» If error found, iIssue and append error statement

“* Check promoted operand values
» If error found, iIssue and append error statement

“ If an assignment expression
» Evaluate RHS first and LHS second

Example Output

e char cl;

int 11 = 64; » |f new LHS value can be determined, validate value and add to
cl = il * 2; ookup table
» |f value cannot be determined, issue a conditional

warning

* ((EXPSTMT (ASSN (ID “cl” 2)_ > If value Is in error, append error statement which g 2.4¢
(MULT (ID “il1” 3) (LIT 2))) remains until next assignment statement. Al %
(LINE 3)) » Proof Generation

(2 (“cl”) ((CHAR) (NOQUAL) (NOSTORE)
(128) (“Error: exceeds value range of type”
CHAR))))

